The Microlocal Properties of the Local 3-D SPECT Operator

نویسندگان

  • Raluca Felea
  • Eric Todd Quinto
چکیده

We prove microlocal properties of a generalized Radon transform that integrates over lines in R3 with directions parallel to a fairly arbitrary curve on the sphere. This transform is the model for problems in slant-hole SPECT and conical-tilt electron microscopy, and our results characterize the microlocal mapping properties of the SPECT reconstruction operator developed and tested by Quinto, Bakhos, and Chung. We show that, in general, the added singularities (or artifacts) are increased as much as the singularities of the function we want to image. Using our microlocal results, we construct a differential operator such that the added singularities are, relatively, less strong than the singularities we want to image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Inversion Of The Sonar Transform Regularized By The Approximate Inverse

A new reconstruction method is given for the spherical mean transform with centers on a plane in R which is also called Sonar transform. Standard inversion formulas require data over all spheres, but typically, the data are limited in the sense that the centers and radii are in a compact set. Our reconstruction operator is local because, to reconstruct at x, one needs only spheres that pass nea...

متن کامل

Some properties of a general integral operator

In this paper‎, ‎we consider a general integral operator $G_n(z).$ The main object of the present paper is to study some properties of this integral operator on the classes $mathcal{S}^{*}(alpha),$ $mathcal{K}(alpha),$ $mathcal{M}(beta),$ $mathcal{N}(beta)$ and $mathcal{KD}(mu,beta).$‎

متن کامل

The Geodesic X-ray Transform with Fold Caustics

We give a detailed microlocal study of X-ray transforms over geodesics-like families of curves with conjugate points of fold type. We show that the normal operator is the sum of a pseudodifferential operator and a Fourier integral operator. We compute the principal symbol of both operators and the canonical relation associated to the Fourier integral operator. In two dimensions, for the geodesi...

متن کامل

Regularity, Local and Microlocal Analysis in Theories of Generalized Functions

We introduce a general context involving a presheaf A and a subpresheaf B of A. We show that all previously considered cases of local analysis of generalized functions (defined from duality or algebraic techniques) can be interpretated as the B-local analysis of sections of A. But the microlocal analysis of the sections of sheaves or presheaves under consideration is dissociated into a ”frequen...

متن کامل

Ozaki's conditions for general integral operator

Assume that $mathbb{D}$ is the open unit disk. Applying Ozaki's conditions, we consider two classes of locally univalent, which denote by $mathcal{G}(alpha)$ and $mathcal{F}(mu)$ as follows begin{equation*}  mathcal{G}(alpha):=left{fin mathcal{A}:mathfrak{Re}left( 1+frac{zf^{prime prime }(z)}{f^{prime }(z)}right) <1+frac{alpha }{2},quad 0<alphaleq1right}, end{equation*} and begin{equation*}  ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2011